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Caging Polygons by a Finger and a Wall
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Abstract

This paper addresses the problem of caging an ar-
bitrary polygon in the plane by a finger-wall caging
grasp, which consists of a finger of a robot arm and
a wall. An object is caged by a finger-wall grasp,
when it is impossible for the object to move to an ar-
bitrary placement far from its initial placement with-
out penetrating the finger or the wall. We present an
algorithm in O(n2 log n) time for computing all con-
figurations of the finger-wall grasp which cage a given
polygon with n edges. In addition, the output set
of all caging grasps can be queried in O(log n) time
to check whether a given arbitrary finger-wall grasp
cages the polygon.

1 Introduction

Robotic manipulators are designed to perform a wide
variety of tasks in production lines of diverse indus-
trial sectors, such as assembly or part orienting. To
perform these tasks the robot arm has to first grasp
the object in a proper way. Human being, whom
robotic researchers have tried to mimic in many areas,
to perform pick and place and also transportation, of-
ten grasp the object in a way that it can move among
the grasping fingers, but cannot escape through them
[1]. The caging problem (or capturing problem) was
posed by Kuperberg [2] as a problem of finding the
set of all placements of fingers which prevent an object
from moving arbitrarily far from its given position.

It is generally assumed in the literature that ob-
jects are grasped at some point contacts and idealiza-
tions such as a line or surface contact can be approx-
imated by two or more point contacts [3]. Fingertip
grasps (point contacts) enable precise control of the
object and adroit object manipulation, but limit the
amount of force which can be exerted on the work
piece. Inner-Link grasps where contacts occur at more
than one point along a link are more stable in the face
of environmental disturbances and can exert higher
forces on a grasped object. However, they are geo-
metrically more complicated and consequently more
difficult to analyze [4]. Hence, it is important to look
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for the other possible practical grasps in order to re-
duce the number of point contacts. In everyday life,
we frequently lean an object against a flat surface,
such as a table or a wall, to constrain its motions. In
the planar world, the analog of a wall is a supporting
line [5]. Thus, we consider finger-wall grasps in which
the finger is represented by a point, and the wall is
represented by a line.

There are also some researches on caging polygons
by three-finger and two-finger grasps. Pipattanasom-
porn and Sudsang [6], and Vahedi and van der Stap-
pen [7] independently have solved the problem for
two-finger grasps in O(n2 log n) time, and also con-
structed a data structure capable of answering queries
in O(log n) time. The running time of both solu-
tions is independent of the complexity of the reported
caging grasps. Whereas the number of elements in
finger-wall caging grasps are equal to the number of
elements in two-finger caging grasps, there are some
similarities between these problems solving methods.

In this paper we present an algorithm to find the
set of all finger-wall caging grasps of a given polygon
in O(nm log n) where m is the size of the polygon’s
convex hull. In section 2 some basic definitions and
notations are introduced. In section 3 the space con-
figuration is partitioned in order to reduce the search
space and in section 4 a graph which represents the
search space is constructed. Finally, in section 5 we
conclude the paper.

2 Preliminaries and Notations

This section addresses the problem of caging a poly-
gon P by a point and a line. Formally, P is caged
by a point and a line when its placement lies in a
compact valid region of its free configuration space
regarding the point and the line as obstacles. In-
formally, polygon P is caged by a point and a line
when it is impossible to take the object to arbitrary
placement far from its initial placement without pen-
etrating the point and/or the line. A placement of
the point and the line is a caging configuration if the
object is caged by that placement of the point and
the line. In general it is easier for the explanation to
consider the polygon fixed and to move the point and
the line instead while keeping their mutual distances
fixed. Therefore, P is caged when it is impossible to
rigidly move (translate and/or rotate) the point and
the line to infinity without penetrating P .
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The given simple polygon P in the plane is bounded
by n edges and is assumed to lie inside ω1 (which ωi
is a circle of radius i centered at O). Finding the set
of all valid configurations of the point and the line
that cage P is the target in this paper. The bounded
configuration space F ⊂ R4 represents the set of all
possible configurations of the point and the line. For-
mally F = Fp×Fl in which Fp is the set of all points
which lie outside the polygon and inside the ω1 and
Fl is the set of points which are obtained from a map
of all lines which do not intersect the polygon and
do intersect the ω3. It can be proven that any point
which lies outside the ω1 is not the point of any caging
configuration, also any line which does not intersect
the ω3 is not the line of any caging configuration.

A unit trajectory of a point is a continuous func-
tion Tp : [0, 1] → Fp that starts at Tp(0) ∈ Fp and
terminates at Tp(1) ∈ Fp, where Tp(t) denotes the
position of the point on the plane at a normalized
time t ∈ [0, 1]. A unit trajectory of a line is a continu-
ous function T l : [0, 1]→ Fl that starts at T l(0) ∈ Fl
and terminates at T l(1) ∈ Fl, where T l(t) denotes the
position of the line on the plane at a normalized time
t ∈ [0, 1]. A synchronized trajectory pair (Tp, T l) rep-
resents the movement of the point and the line, such
that (Tp(t), T l(t)) denotes the system’s configuration
at a normalized time t ∈ [0, 1].

For x = (p, l) ∈ F , we refer to the segment which
starts at p and ends at its perpendicular intersection
point with l (and does not contain the intersection
point) as h[x) or h[p, l). x is a free configuration if
h[x) does not intersect the interior of the polygon.
A synchronized trajectory pair which starts at x ∈ F
and terminates at a free configuration is an escape tra-
jectory of x. The Euclidean distance from p to l is rep-
resented by d(x). Separation distance of the synchro-
nized trajectory pair (Tp, T l) is the maximum dis-
tance from Tp(t) to T l(t) during the trajectory, and
is represented by Sd(Tp, T l) = max

0≤t≤1
d(Tp(t), T l(t)).

The critical distance of x is the minimum separation
distance of all escape trajectories of x and is repre-
sented by cd(x) = min

∀(Tp,T l)
Sd(Tp, T l) where (Tp, T l)

is an escape trajectory of x. Obviously, for any x ∈ F
there is cd(x) ≥ d(x).

Proposition 1 x ∈ F is a caging configuration if and
only if cd(x) > d(x).

Caging configurations x and x′ are connected if
there is a synchronized trajectory pair from x to x′

in which all configurations are caging. We refer to a
maximal connected set of caging configurations as a
maximal caging set.

Lemma 2 If x is a caging configuration and there is
a synchronized trajectory pair (Tp, T l) from x to x′

that Sd(Tp, T l) < cd(x) then x and x′ are connected.

Lemma 3 If x and x′ are connected, cd(x) = cd(x′).

Regarding the proposition 1 computing the critical
distance of all configurations is sufficient to find the
caging configurations. According to Lemma 3 the crit-
ical distance of all members of a maximal caging set
are equal. Hence, in the following, the critical distance
of maximal caging sets are computed by partitioning
the configuration space and creating a corresponding
graph.

3 Configutation Space Partitioning

The vertices of the polygon P in counterclockwise or-
der are called v1, v2, . . . , vn and its edges are called
ei = vivi+1 (1 ≤ i ≤ n and vn+1 = v1). The ver-
tices of the convex hull of P in counterclockwise order
are called V1, V2, . . . , Vm in which m = |CH(P )| and
its edges are called Ej = VjVj+1 (1 ≤ j ≤ m and
Vm+1 = V1). We represent a partitioning for the con-
figuration space, such that the resulting cells of the
partitioning do not have intersections with each other
unless in their boundaries. x = (p, l) ∈ F is in cell
Fij ⊂ F , if ei is the first edge of P that intersects with
segment h[p, l) and Vj is the nearest vertex of CH(P )
to line l. And x = (p, l) ∈ F is in cell Ffree ⊂ F
if h[p, l) does not intersect P . Furthermore, we split
some cells into two or three cells in order to make
cells reaching some properties. In the following, the
two types of split functions are introduced.

For Fij ⊂ F we call the line which is along Ej−1
as the left boundary line or Lb for short, and the line
which is along Ej as the right boundary line or Rb
for short. Directions of Lb and Rb show the range of
directions for the line of Fij ’s configurations.

Type 1: If there is a configuration (p0, l0) ∈ Fij in
which l0 passes through Vj and directions of l0 and
ei are equal, then split the Fij into two cells of F lij
and F rij . Cell F lij contains (p, l) ∈ Fij in which the
direction of l is between directions of Lb and l0, and
cell F rij contains (p, l) ∈ Fij in which the direction of
l is between directions of l0 and Rb. By this split the
line direction of a cell’s configurations are all greater
or all smaller than the direction of ei.

Type 2: For cell F kij (k ∈ {null, r, l}) and its bound-
ary lines Lb and Rb, we call the endpoint of ei, which
has the smaller summation of distances from Lb and
Rb, as nearest endpoint or N for short. If there is a
configuration (p0, l0) ∈ F kij in which l0 passes through

Vj and is perpendicular to NVj , then split the F kij into

two cells of F l
′
ij and F r

′
ij . Cell F l

′
ij contains (p, l) ∈ F kij

in which the direction of l is between directions of Lb
and l0, and cell F r

′
ij contains (p, l) ∈ F kij in which the

direction of l is between directions of l0 and Rb. By
this split the line direction of a cell’s configurations
are all greater or all smaller than the direction of the
perpendicular line to NVj .
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Finally the number of obtained cells is of the order
of O(nm). Regarding the properties of cells it can be
observed that, for (p0, l0) ∈ F kij (k ∈ {null, r, l, r′, l′})
in which p0 ∈ ei, if p0 goes to N along ei while the
line is static, the distance of the point and the line
decreases in the trajectory. Also for (N, l0) ∈ F kij in
which l0 passes through Vj , if l0 rotates around Vj to
Lb or Rb while the point is static at N , the distance
of the point and the line change strictly monotonic
in any of both trajectories. Configuration xmin ∈ F kij
is a local minima of F kij if for all x ∈ F kij there is
d(xmin) ≤ d(x). Therefore, xmin = (N,B) where B
is either Lb or Rb which is the nearest one to N .

Lemma 4 If xmin is the local minima of F kij , for any

x ∈ F kij there is a trajectory that starts at x and ends
at xmin in which the distance of the point and the
line decreases.

Proof. Construct the trajectory which starts at x =
(p, l) and continues by getting p and l close to each
other along h[x), and terminates at x′ = (p′, l′) in
which p′ is the intersection of h[x) with ei and l′ is the
parallel line to l passing through Vj . The trajectory
continues by moving p′ along ei toN while the line l′ is
static, and then continues by rotating l′ to B while the
point is static at N . Obviously the final configuration
is xmin = (N,B) and the distance between the point
and the line decreases during the trajectory. �

Lemma 5 Any cell which is obtained from the con-
figuration space partitioning has intersection with at
most one maximal caging set.

Proof. If xmin is the local minima of F kij and x0 ∈ F kij
is a caging configuration, there is a trajectory with
separation distance of d(x0) which starts at x0 and
terminates at xmin (Lemma 4); thus, x0 and xmin
are connected (Lemma 2). In results xmin, x and
similarly all the other caging configurations of F kij are
members of the same maximal caging set. �

Conclusion: F kij has intersection with a maximal

caging set if and only if the local minima of F kij is a
caging configuration.

Lemma 6 If xmin is the local minima of F kij then
min
x∈Fk

ij

cd(x) = cd(xmin).

Proof. If xmin is not a caging configuration then
there is not any caging configuration in F kij (Lemma 5)

and cd(x) = d(x) for all x ∈ F kij . In results
min cd(x) = min d(x) = d(xmin) = cd(xmin). If xmin
is a caging configuration, assume to the contrary that
there is x0 ∈ F kij for which cd(x0) < cd(xmin). Ac-
cording to Lemma 4 there is a trajectory from x0
to xmin with separation distance of d(x0) which is

d(x0) ≤ cd(x0) < cd(xmin). So on the reverse trajec-
tory is the one from the caging configuration xmin to
x with separation distance of less than cd(xmin). So
cd(x) = cd(xmin) (Lemma 2), which contradicts our
assumption. Thus, cd(x) ≥ cd(xmin) for all x ∈ F kij
and it results min cd(x) = cd(xmin). �

Theorem 7 Any x ∈ F kij is a caging configuration if
and only if d(x) < cd(xmin).

Proof. If x is a caging configuration we have d(x) <
cd(x), also x and xmin are connected (Lemma 2); and
cd(x) = cd(xmin) (Lemma 3); so, d(x) < cd(xmin).
If d(x) < cd(xmin) it is equal to d(x) < min

x∈Fk
ij

cd(x)

(Lemma 6) ; hence, d(x) < cd(x) and it means that x
is a caging configuration. �

Regarding the Theorem 7, in order to find the set
of caging configurations of a cell, it is sufficient to
compute the critical distance of the cell’s local minima
-called critical distance of the cell. In the following,
computing the critical distance of cells is discussed.

4 Finding Critical Distance of Cells

Considering xb = (pb, lb) ∈ F such that pb is on the
boundary of the polygon and lb is a tangent line to
the polygon. For escape trajectory (Tp, T l) of xb, the
corresponding squeezed escape trajectory (Tps, T ls)
with smaller separation distance is constructed in 3
steps. In the first step, for t ∈ [0, t′] when t′ is the
smallest value that (Tp(t′), T l(t′)) is a free configura-
tion, call the first intersection point of h[Tp(t), T l(t))
with the polygon as Tp′(t), and from the two lines
which are parallel to T l(t) and tangent to the poly-
gon call the nearest one to T l(t) as T l′(t). Obviously
the separation distance of (Tp′, T l′) is smaller than
or equal to the separation distance of (Tp, T l). In
the second step, if Tp′ is discontinuous, add segments
between each two consecutive discontinuous points to
make the continuous trajectory Tp′′, so the separa-
tion distance of (Tp′′, T l′) and (Tp′, T l′) in [0, t′] are
equal. In the third step, scale t′ in order to make
a synchronized trajectory pair in [0, 1]. We refer
to the obtained trajectory as squeezed escape tra-
jectory and represent it with (Tps, T ls). Obviously
Sd(Tps, T ls) ≤ Sd(Tp, T l). Thus, to find the critical
distance of xb computing the separation distance of
all different squeezed escape trajectories is sufficient.
Since the local minima of a cell, which was represented
by xmin = (N,B), has the properties of xb, in order
to find the critical distance of a cell, we will compute
the separation distance of all squeezed escape trajec-
tories of the cell’s local minima. In the following, the
relationship among critical distances of adjacent cells
have been formalized.
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Consider B(Fi, Fj) represents the set of configu-
rations which are in common boundaries of Fi and
Fj . If x1 ∈ B(Fi, Fj) and x2 ∈ B(Fj , Fk) there
are two trajectories, one from x1 and the other
from x2 to local minima of Fj with separation dis-
tances of respectively d(x1) and d(x2). Hence, there
is a trajectory from x1 to x2 with separation dis-
tance of max{d(x1), d(x2)}. It concludes that for a
squeezed escape trajectory which starts at x0 and
passes through F1, F2, . . . , Ff , Ffree the separation
distance is max

1≤i≤f
{d(xi)} where xi ∈ B(Fi, Fi+1).

Thus, among all squeezed escape trajectories pass-
ing through F1, . . . , Ff , Ffree the one which passes
through the local minima of common boundaries’ con-
figurations has the minimum separation distance.

There is a transition between each two cells Fi and
Fj if B(Fi, Fj) 6= ∅, and the cost of the transition is
equal to the minimum of d(x) for all x ∈ B(Fi, Fj).
In the worst case situation, the number of transitions
that a cell is associated with can be as high as O(n).
Fortunately, we found out there are only O(1) tran-
sitions associating with a cell, which are called basic
transitions, that have effects on the computation of
separation distance of any squeezed escape trajectory.

Theorem 8 If there is a transition between F1 and
F2 with the cost of d(x12), there is a sequence of basic
transitions that starts at F1 and ends at F2, in which
the maximum cost of the basic transitions are less
than or equal to d(x12).

For xmin ∈ Fi, any squeezed escape trajectory is
corresponding to a sequence of cells starting at Fi
and ending at Ffree. Thus in order to compute the
cd(xmin) which is the minimum separation distance of
all squeezed escape trajectories for xmin, we should
find the minimum of maximum of basic transitions’
cost in any sequence of cells starting at Fi and ending
at Ffree. In this paper the basic transitions are not
described; however, finding the basic transitions and
their cost is of order O(nm log n) by running O(nm)
times of Ray shooting algorithm. From insights we
have obtained so far, we are now ready to concrete
the definition of our search space.

Connectivity graph G = (VG, EG) is a weighted
graph that any vertex vgi ∈ VG corresponds to cell
Fi ⊂ F and any edge eij ∈ EG corresponds to a basic
transition between two cells Fi and Fj , and its weight
is equal to the cost of the basic transition which is
called wij . Also critical distance of vgi ∈ VG is equal
to the critical distance of Fi which is called D(vgi).

Theorem 9 For any vgi ∈ VG if N(vgi) ⊂ VG is
the set of all vertices which are adjacent to vgi, then
D(vgi) = min

vgj∈N(vgi)
(max (D(vgj), wij)).

According to the Theorem 9 if vgi and vgj are adja-
cent vertices of G then D(vgi) ≤ max{(D(vgi), wij)};
To compute the critical distances of vertices we
present a slightly modified Dijkstra algorithm. The
first step of the algorithm is to initialize the crit-
ical distance of all vertices as infinite except the
critical distance of vgfree, which corresponds to cell
Ffree ⊂ F , as zero. In each step a vertex vgi,
which has the minimum critical distance between all
the not selected vertices, is selected and the critical
distance of its adjacent vertices are updated; If the
present critical distance of vgj ∈ N(vgi) is greater
than max{(D(vgi), wij)} set max{(D(vgi), wij)} as
the updated critical distance of vgj . Then add the
vgi to the set of selected vertices. Do the same proce-
dure until all the vertices have been selected. Finally,
by having critical distance of vertices, the set of all
caging configurations of any cell Fi, which is repre-
sented by Ci = {x ∈ Fi|d(x) < D(Fi) = D(vgi)}, can
be computed. To decide whether a given configura-
tion x is a caging configuration or not, find cell Fi
that x ∈ Fi by running the Ray shooting algorithm in
O(log n), then d(x) and D(Fi) should be compared.

5 Conclusion

It was discussed that computing the critical distance
ofl maximal caging sets is sufficient to find all the
caging configurations. Thus, the configuration space
was partitioned and the critical distance of cells was
computed by searching in a graph. Computing the
vertices and the edges of the connectivity graph are
respectively of the order of O(nm) and O(nm log n),
searching the graph to compute the critical distance
of cells is also O(nm log n). Therefore, the running
time of the algorithm is O(nm log n) and the query
can be answered in O(log n) time.
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